The Endless Wonder that is Stacking

Marco Viero — KIPAC/Stanford w/ Lorenzo Moncelsi, Jason Sun (Caltech), Dongwoo Chung (KIPAC/Stanford)

Outline

- The CIB
- The challenge
- The solution
 - SIMSTACK code and how to use it.
- Some interesting results
- Some applications and Future work

Motivation — History of Star Formation

- Infrared/Submillimeter emission reprocessed starlight by dust.
- IR/Submm traces star formation.
- The CIB contains the integrated history of star formation.

- Why not determine SFRs by observe the dust directly, rather than correcting UV?
- Missing population of dusty galaxies at high-z?

marco.viero@stanford.edu

• Outliers?

Dusty Galaxies at High-z

 Negative K-correction means galaxies remain bright as z increases!

Herschel Space Observatory – SPIRE

Galaxy Lunch — Cornell — October 27 2017

250 μm

Challenge – Source Confusion

Solution

Use:

The fact that intensity fluctuations contain signal
Ancillary Data
Creativity + Statistics

GOODS-S Half 1

<u>marco.viero@stanford.edu</u> Galaxy Lunch — Cornell — October 27 2017

GOODS-S

Half 2

Covariance of Catalog and Map (Stacking)

Covariance of Catalog and Map (Stacking)

 Thumbnail stacking is no bias equivalent to saying the off-diagonals of the arcsec_{FWHM} 10,000 arcsec_{FWHM} covariance are zero. arcsec_{FWHM} 25 simulations 35 arcsec_{FWHM} 0.8 same as saying objects are uncorrelated (i.e., Hits 0.6 not clustered.) zed 0.4 10 0.2 15 20 0.01.0 0.9 0.8 1.1 1.2 25 $S_{stacked}/S_{input}$ 30 30 10 15 20 25 5

marco.viero@stanford.edu Cornell Astronomy Colloquium — October 26 2017

Covariance of Catalog and Map (Stacking)

- Thumbnail stacking is equivalent to saying the off-diagonals of the covariance are zero.
 - same as saying objects are uncorrelated (i.e., not clustered.)
- But galaxies are clustered, and it has an impact.

SPIRE Contour

 Difficult to attribute an individual submillimeter "source" to any single galaxy

 Key is to identify galaxies with similar *physical* properties, and then rely on *statistics to fit fluctuations*

SIMSTACK: Simultaneous Stacking Algorithm

Formalism developed w/ Lorenzo Moncelsi (Caltech); also see Kurczynski & Gawiser (2010), Roseboom et al. (2010)

SIMSTACK code publicly available (see arXiv:1304.0446): IDL (old) — https://web.stanford.edu/~viero/downloads.html Python — https://github.com/marcoviero/simstack

SIMSTACK code publicly available (see arXiv:1304.0446): Python — https://github.com/marcoviero/simstack

<u>marco.viero@stanford.edu</u> Galaxy Lunch — Cornell — October 27 2017

Catalogs

• UKIDSS/UDS [2/3 deg²] / COSMOS [1.6 deg²]

uBVRizJHK + IRAC ch1234

K-band cut 23.4 / 24 AB

80,000 / 120,000 sources

- Redshifts EAZY (Brammer 2008)
- Masses FAST (Kriek 2009)
- Colors UVJ (Williams 2009)

HERMES

SIMSTACK: Measurement Data

Maps

- Spitzer/MIPS
 - 24, 70µm
- Herschel/PACS
 - 100, 160µm
- Herschel/SPIRE
 - 250, 350, 500µm
- ASTE/AzTEC
 - 1100µm

HERMES

SIMSTACK: Flux Densities (M,z)

SIMSTACK: SEDs

SIMSTACK: SEDs

marco.viero@stanford.edu

Galaxy Lunch - Cornell - October 27 2017

SIMSTACK: LIR(M,Z)

marco.viero@stanford.edu

Galaxy Lunch — Cornell — October 27 2017

redshift

CIB Breakdown

HERMES

- Broken down by Luminosity class
- In good agreement with previous estimates w. resolved sources.
 - but to much higher redshift!
- Broken down by stellar mass see clear downsizing.

CIB Breakdown

marco.viero@stanford.edu

Galaxy Lunch — Cornell — October 27 2017

SIMSTACK is simple to use

Define type of stack, and where everything is, in config file.

./run_simstack_cmd_line.py config_file_name.cfg

: Example parameter file for simstack code	[maps_to_stack] ; True/False represents whether to stack them
:	mips_24 = 24.0 False
: Contact: Marco Viero (marco.viero@stanford.edu)	pacs_green = 100.0 False
	pacs_red = 160.0 False
[neneral]	spire_PSW = 250.0 True
(general)	spire_PMW = 350.0 False
populations chooses now the catalog is split into groups with like-properties	spire_PLW = 500.0 False
Classifying_scheme chooses now the catalog is split into groups with like-properties	scuba_450 = 450.0 False
(options are: si-qt; general; uv];	scuba_850 = 850.0 False
classification_scheme = general	
bootstrap = False 0 2 ; True/False, initial number, number of iterations	[map_path]
;Catalog specific names for redshift, stellar mass, RA, and DEC	mips_24 = MAPSPATH /data/cutouts/
zkey = PHOTOZ	pacs_green = MAPSPATH /data/cutouts/
mkey = MASS_MED	<pre>pacs_red = MAPSPATH /data/cutouts/</pre>
ra_key = ALPHA_J2000	<pre>spire_PSW = MAPSPATH /data/cutouts/</pre>
dec_key = DELTA_J2000	<pre>spire_PMW = MAPSPATH /data/cutouts/</pre>
	spire_PLW = MAPSPATH /data/cutouts/
[populations]	scuba_450 = MAPSPATH /data/cutouts/
:Name of sub-population = index. [conditions]	scuba_850 = MAPSPATH /data/cutouts/
:Here conditions are: feature, greater than, less than, equal to	
False when one of those does not apply	[map_file]
ef = 1 (LASS Coles Coles 1	; Maps need to be in Jy/beam. If they are no
	<pre>mips_24 = mips_24_GO3_sci_10.cutout.fits</pre>
dead = 0 CLASS False False 0	<pre>pacs_green = pep_COSMOS_green_Map.DR1.sci.cut</pre>
formal and a Development Planetar	<pre>pacs_red = pep_COSMOS_red_Map.DR1.sci.cutou</pre>
[cosmology]; Cosmology - Planckis	<pre>spire_PSW = cosmos-uvista-hipe12_itermap_10_</pre>
omega_m = 0.3075	<pre>spire_PMW = cosmos-uvista-hipe12_itermap_10_</pre>
omega_1 = 0.6910	<pre>spire_PLW = cosmos-uvista-hipe12_itermap_10_</pre>
omega_k = 0.	<pre>scuba_450 = map450_new_header.cutout.fits</pre>
h = 0.6774	scuba_850 = S2CLS_COSMOS_NMF_DR1_new_header.
[io] ; Input/output	[noise_file]
;output_folder will contain the directories:	; IT TITS TILE CONTAINS NOISEMAP IN SECOND ()
; - simstack_fluxes	mips_24 = mips_24_GU3_unc_10.cutout.rits
; - bootstrapped_fluxes	pacs_green = pep_CUSMUS_green_Map.Dk1.err.cut
; If they don't exist the code will create them!	pacs_red = pep_CUSMUS_red_Map.DK1.err.cutou
output folder = PICKLESPATH simstack/stacked flux densities/	spire_PSW = cosmos-uvista-nipel2_itermap_10
flux densities filename = simstack flux densities	spire_PMW = cosmos-uvista-nipel2_itermap_10
shortname = uVista Laigle v1.1 sf_nt z bigs in slices test	spire_PLW = cosmos-uvista-nipeiz_itermap_10
	scuba_450 = map450_new_neader_rms.cutout.fit
[catalone]	SCUDA_000 = SZULS_CUSMUS_NMP_DK1_NEW_NEADE1
cotolog path - CATEDATH Wisto/	[beams]
catalog_path = CATSPATH UVISta/	[Deams]
catalog_file = COSMOS2015_Laigle+_Simplified_v1.1.csv	;2- Beam area in sr. Should be 1.0 if maps a
[binning]	mips_24 = 6.32 1.55e-09
optimal binning = False : Not vet working	pacs_green = 6.7 2.0271e-09 ; MJy/sr to Jy/be
bin in lookbackt= False : Not yet working from command line, and requires NPpredict be installed	pacs_red = 11.2 4.6398e-09 ; MJy/sr to Jy/t
all z at once = False	spire_PSW = 17.6 1.0
II	spire_PMW = 23.9 1.0
redebift pades = 0.01.0.5.1.0.1.5.2.0.2.5.2.0.2.5.4.0	spire_PLW = 35.2 1.0
redshirt_hodes = 0.01 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	scuba_450 = 7.8 1.0
mass_noues = 0.5 4.0 4.5 10.0 10.5 11.0 12.0	scuba_850 = 12.1 1.0

they are not, use second element in [beams] below to convert them. tout.fits DR1.sci.cutout.fits 1.sci.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PSW.signal.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PMW.signal.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PLW.signal.cutout.fits out.fits new_header.cutout.signal.fits n second extension, has same name as signal map tout.fits DR1.err.cutout.fits 1.err.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PSW.noise.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PMW.noise.cutout.fits itermap_10_iterations_6.0_arcsec_pixels_PLW.noise.cutout.fits .cutout.fits new_header.cutout.noise.fits ive FWHM 0 if maps are in Jy/beam, otherwise actual effective area if Jy/sr sr to Jy/beam /sr to Jy/beam

SIMSTACK

marco.viero@stanford.edu

- It will save stacked results in a folder you define.
- You can access the results with an iPython Notebook
 - <u>https://github.com/marcoviero/simstack/blob/master/</u> notebooks/plot_simstack_output.ipynb

Galaxy Lunch — Cornell — October 27 2017

SIMSTACK: LIR(M,z,...)

Assuming only L(M,z), i.e.; star-forming main sequence

ід(L =40 ум⁼

Vormal

AGN fraction
Age/Tau...
Each bin therefore has

Deep ancillary data can

be fit with SED models,

Extinction/UV slope

nrovidina:

Redshift

Stellar Mass

 $<M>,<z>,<Av>,<F_{agn}>,$ etc., which can be fit with function of form:

• LIR=P(z)^{α}P(M)^{β}P(A-v)^{γ} ...

redshift

slices

Fit can be improved by splitting the sample into finer subsamples, isolating e.g,;

- Star-forming/Quiescent
- AGN
- Starbursts

We find features most influential are, for 4 subsamples:

• $\log(\text{LIR}) = C+$ $\alpha(z) \times \log(1+z) +$ $\beta(z) \times \log(M) +$ $\gamma(z) \times \log(Av) +$ $\delta(z) \times \log(F_{agn})$

Fit can be improved by splitting the sample into finer subsamples, isolating e.g,;

- Star-forming/Quiescent
- AGN
- Starbursts

We find features most influential are, for 4 subsamples:

• log(LIR) = C+ $\alpha(z) \times log(1+z) +$ $\beta(z) \times log(M) +$ $\gamma(z) \times log(Av) +$ $\delta(z) \times log(F_{agn})$

SIMSTACK: LIR(M,z,Av,Fagn)

SEDSTACK: Beyond Flux

nulnu

log(wavelength)

And FLUCTFIT?

Applications: CII/CO/CIB Modeling

et al. 2000; Kowan- L_{CO} (units of L_{\odot}) is

Magnelli et al. 2012; hroozi et al. (2013a). a recent comprehen-MF for high-redshift cope of this paper. In

Not all halos the same (assembly bias): Add scatter.

Not all galaxies star-forming: *Add scatter*.

be absorbed into $\sigma_{\rm SFR}$

Luminosity

minosity, we assume

$$L_{\rm CO} = 4.9 \times 10^{-5} L_{\odot} \left(\frac{\nu_{\rm CO,rest}}{116^{27} \,\text{GHz}} \right)^3 \left(\frac{L'_{\rm CO}}{\text{K km s}^{-1} \,\text{pc}^2} \right) (4)$$

where $\nu_{\rm CO,rest} = 115.27 \,\text{GHz}$ is the rest-frame frequency of the CO transition.

To resummarize the model:

- 1. Halos \rightarrow SFR: Get $\overline{\text{SFR}}(M, z)$ from the results of Behroozi et al. (2013a)
- \leftarrow 2. Add log-scatter, $\sigma_{\rm SFR}$
 - 3. SFR $\rightarrow L_{IR}$: Get L_{IR} from SFR $= \delta_{MF} \times 10^{-10} L_{IR}$ 4. $L_{IR} \rightarrow L'_{CO}$: Get L'_{CO} from $\log L_{IR} = \alpha \log L'_{CO} + \beta$
- -5. Add log-scatter, $\sigma_{L_{CO}}$

with fiducial parameter values:

 $\sigma_{\rm SFR} = 0.3, \, \sigma_{L_{\rm CO}} = 0.3, \ \delta_{\rm MF} = 1.0, \, \alpha = 1.37, \, \beta = -1.74.$

Figure 2 shows the combined result of these steps, plotting the mean $L_{CO}(M_h)$ relation from our fiducial model, as well as the equivalent relation from previous studies. Notably, L_{CO} in this model is not linear in M, a simplifying assumption that has

Galaxy Lunch – Cornell – October 27 2017 of (α, β) in Dessauges-

marco.viero@stanford.edu 7

Applications: CII/CO/CIB Modeling

et al. 2000; Kowan- L_{CO} (units of L_{\odot}) is

hass function, which Magnelli et al. 2012; hroozi et al. (2013a). a recent comprehen-MF for high-redshift cope of this paper. In es quoted above, we $\log \delta_{\rm MF} = 0.0 \pm 0.3$ prior's $\pm 3\sigma$ interval

be written as explicitly accounts as opposed to active simplicity, we have out Equation (1) due be absorbed into σ_{SFR}

Luminosity

minosity, we assume

$$L_{CO} = 4.9 \times 10^{-5} L_{\odot} \left(\frac{\nu_{CO,rest}}{14627 \text{ GHz}} \right)^{3} \left(\frac{L'_{CO}}{\text{K km s}^{-1} \text{ pc}^{2}} \right) (4)$$
where $\nu_{CO,rest} = 115.27 \text{ GHz}$ is the rest-frame frequency of the CO transition.
To resummarize the model: Stellar Mass – M*
1. Halos \rightarrow SFR: Get SFR(M,z) from the results of Behroozi et al. (2013a) Use empirically derived
2. Add log scatter, σ_{SFR}
3. SFR $\rightarrow L_{IR}$: Get L_{IR} from SFR $= \delta_{MIF} \times 10^{-10} L_{IR}$
4. $L_{IR} \rightarrow L'_{CO}$: Get L'_{CO} from $\log L_{IR} = \alpha \log L'_{CO} + \beta$
5. Add log-scatter, σ_{LCO}

with fiducial parameter values:

$$\sigma_{
m SFR} = 0.3, \, \sigma_{L_{
m CO}} = 0.3, \ \delta_{
m MF} = 1.0, \, lpha = 1.37, \, eta = -1.74.$$

Figure 2 shows the combined result of these steps, plotting the mean $L_{CO}(M_h)$ relation from our fiducial model, as well as the equivalent relation from previous studies. Notably, L_{CO} in this model is not linear in M, a simplifying assumption that has

Applications

Signal

Connect to Halo properties (including assembly bias) to:

- estimate CO levels,
- construct covariances,
- test different estimators (i.e., beyond power spectrum),
- Details being discussed during this meeting!
- Extend to other lines that correlate with thermal dust SED
 - CII, OII, OIII, NII
 - r.f. 850um as tracer of ISM Mass.
- Foregrounds
 - Predict CO contamination in CII data cubes (e.g, Sun and the TIME collaboration, 2017)

Masking CO in CII line-intensity maps

- Targeting CII at z = 6-10 means separating signal from lower-z CO.
- In deep fields (e.g., COSMOS, UDS, GOODS), all potentially significant CO emitters (z=1-3) will be cataloged in the UV, optical, and NIR with great detail.
 - In these cases, we can construct an estimator for CO from optical predictors of the mean LIR.
 - How much variance is there from the mean, and how aggressively does masking need to be to play it safe?

Masking CO in CII data: Sun et al. 2017

Variance in the LIR estimator determined by comparing scatter in the difference map with simulations.

• Find sigma = 0.33

Sun, Moncelsi, Viero & TIME collaboration 2017, arXiv:1610.10095

marco.viero@stanford.edu

Galaxy Lunch – Cornell – October 27 2017

Masking CO in CII data: Sun et al. 2017

Sun, Moncelsi, Viero & TIME collaboration 2017, arXiv:1610.10095

marco.viero@stanford.edu

Galaxy Lunch — Cornell — October 27 2017

Summary

- CIB continuum intensities are key to empirically connecting optical features of typical galaxies to their FIR/submm components
- Applications for this model include:
 - ➡Forecasting CO power for:
 - Survey design
 - Covariance construction
 - Testing Estimators
 - Measurement Interpretation
- SIMSTACK is easy to use, and available at: https://github.com/marcoviero/simstack