A Census of the Cosmic Infrared Background; or Combining Measurements Large and Small to Model the Entire Infrared Sky

Marco Viero (KIPAC/Stanford) Lorenzo Moncelsi (Caltech), Ryan Quadri (Texas A&M), Christian Reichardt (Melbourne), Lingyu Wang (Durham), Paolo Serra (U. of Paris, Orsay)

Ø

- There is as much intensity in the infrared background as there is in the optical.
- Together these backgrounds contain a fossil record of the $\frac{10}{5}$ $\frac{10}{5}$ star-formation history of the $\frac{10}{5}$ $\frac{10}{5}$ Universe
- What is the relationship of the CIB to the COB, and can it be explained by optical/NIR galaxies?

The CIB as seen by SPIRE (1200 to 600 GHz)

Herschel/SPIRE

Band	PSF size	Confusion
	(FWHM)	Limit (50)
250 µm	: 16"	24.0 mJy
350 µm	: 25"	27.5 mJy
500 µm	: 36"	30.5 mJy

- < 1% of sources resolved at 5σ due to source confusion
- Strength is surveys, with ~1000 deg² observed

Ø Near-Infrared Ó Selected Sources at z~1.5 \bigcirc

and

ŏ

800

O-

00

Ø

Ş

9

 \bigcirc

 (\mathcal{D})

Č,

NO

Ø

O

Ø

30

80

B

W

 \mathcal{O}

 \bigcirc

6

-0

Æ

8

QD

30

Q

8

 \odot

Ø

æ

The CIB as seen by ALMA

Marco Viero

• What is the Cosmic Infrared Background (CIB)?

- →how much do subsets of galaxies contribute to the CIB?
- can we know the IR properties of *all* galaxies as well as we know their properties in the UV/optical?
- →Can we develop synergies between
 - Iarge-angular-scale surveys (e.g., Herschel, Planck...);
 - small-angular-scale observations (in particular ALMA); and
 - rich sets of multi-wavelength catalogs (e.g., UDS, UltraVISTA, CANDLES, ZFORGE...)

to model the entire infrared background?

Modeling the Background: SIMSTACK

Assumptions/Caveats:

- Galaxies that are physically similar (mass, color) have on average similar FIR/Submillimeter properties.
- Catalog contains all correlated
- objects in the sky.

see arxiv:1304.0446

"This sounds like stacking"

- That's because it (almost) is!
 - Stacking is the covariance of a catalog with a map
 - The difference here is the off-
 - diagonals are not assumed zero
 - All the maths in Viero et al. 2013

 $\times C_{NI}$

 \int

sky

map

Modeling the Background: SIMSTACK **CHERMES**

catalog (Williams & Quadri, in prep.)

• UKIDSS/UDS

uBVRizJHK + IRAC ch1234

K-band magnitude cut 24 AB

81,000 sources in \sim 0.63 deg²

- redshifts EAZY (Brammer 2008)
- masses FAST (Kriek 2009)

maps (HerMES; Oliver et al. 2012)

• *Spitzer/*MIPS 24, 70um

- Herschel/PACS 100, 160um
- Herschel/SPIRE
 250, 350, 500um
- ASTE/AzTEC

1100um

Marco Viero

Modeling the Background: SIMSTACK

70µm

2

1

3

 $24 \mu m$

 $log(M/M_{\odot}) = 11.5 \circ log(M/M_{\odot}) = 10.8 \circ log(M/M_{\odot}) = 10.2 \circ log(M/M_{\odot}) = 9.8 \circ log(M/M_{\odot}) = 9.8 \circ log(M/M_{\odot}) = 0.00 \circ$

2

1

3

Flux Density [mJy]

101

10⁰

10-

10⁻²

Marco Viero

Modeling the Background: SIMSTACK

Star Forming ☆log(M/M_☉) = 11.0-12.0 $\frac{1}{2}\log(M/M_{\odot}) = 10.5 - 11.0$ $rac{1}{2}\log(M/M_{\odot}) = 10.0-10.5$ $rac{1}{2}\log(M/M_{\odot}) = 9.5-10.0$ 13 1000 Star-Formation Rate [Mo/yr] log(L_{IR}) [L_©] 12 100 11 10 ¥ ¥ 10 3 2 4 Viero, Moncelsi, Quadri et al. (2013) Redshift

```
Marco Viero
```

arXiv:1304.0446

Dissecting Galaxies Near and Far - Santiago, Chile, March 2015

HERMES

Origin of the CIB

HERMES

wavelengths

Marco Viero

Origin of the CIB

HERMES

Marco Viero

SIMSTACK: Synthetic Image Fitting Algorithm

Simulation: correlated (i.e., clustered) sources

Imagine this is a SKY MAP

Marco Viero

Marco Viero

Smooth with bigger beam—

Marco Viero

• Parametric fit to the (nominally) stacked flux densities (dotted lines)

• Parametric fit to the stellar mass functions from Leja et al. 2014 (solid lines)

- Circles/Solid lines: Model compared to total CIB after smoothing to 300 arcsec FWHM.
- Crosses/Dashed lines: Model without flux from sources that would be incomplete in catalog, compared to nominal stacking total CIB (WOW!)

Marco Viero

Modeling the Background: Synergies with ALMA

- Current State of Model:
 - ➡ Discrete Coarse Binning into z, M_{stellar}, Star-Forming/Quiescent
 - SF/QT color cut uses (only) rest-frame U, V, J bands
 - Blind fitting with no priors
- How it can be Improved:
 - ➡Further separation (not limited to UVJ) into more sub-classes, e.g.,
 - AGNs, SMGs, Ages/Dustiness
 - Fitting for parameters of continuous functions (including across frequencies)
 - Introduce observational priors in fitting, particularly for intrinsically faint objects
- What's required:
 - Determine adequate number of priors
 - ➡Compile a set of observations:
 - from existing observations (surveys (HUDF!!), targeted, or serendipitous)
 - by proposing for what does not already exist